United States Patent

US009128917B2

(12) 10) Patent No.: US 9,128,917 B2
Blas, Jr. et al. 45) Date of Patent: Sep. 8, 2015
(54) AUTOMATIC CONTENT EXPANSION ;,iig,ggg g% 1%%882 gOSirélO et all~
K A reeden et al.
INDICATORS 2003/0131337 Al 7/2003 Perumainar
. 2003/0145051 Al 7/2003 Bates et al.
(75) Inventors: Joaquin C. Blas, Jr., Pacifica, CA (US); 2003/0214538 Al* 11/2003 Farrington etal. 345/854
John Skidgel, Berkeley, CA (US) 2004/0064791 Al* 4/2004 Hattorietal. 715/517
2004/0075699 Al 4/2004 Franchi et al.
H . 2004/0085367 Al 5/2004 Hagarty, Jr.
(73) Assignee: Adobe Systems Incorporated, San Jose, 2005/0044528 Al /7005 Olsen
CA (US) 2005/0138540 Al* 6/2005 Baltusetal. 715/511
2006/0044597 Al 3/2006 Dumitrescu et al.
(*) Notice: Subject to any disclaimer, the term of this 2007/0283291 Al 12/2007 Morris
patent is extended or adjusted under 35 2008/0092117 Al 4/2008 Cosimo et al.
U.S.C. 154(b) by 2458 days. OTHER PUBLICATIONS
(21) Appl. No.: 11/210,250 “Code Block Highlighter” Sep. 16, 2001, IBM Technical Disclosure
Bulletin, Issue 449.*
(22) Filed: Aug. 23, 2005 Office Action of Apr. 29, 2009 in U.S. Appl. No. 11/209,335.
Office Action of Jul. 10, 2008 in U.S. Appl. No. 11/210,270.
: o Office Action of Jan. 7, 2009 in U.S. Appl. No. 11/210,270.
(65) Prior Publication Data U.S. Appl. No. 11/209,335, filed Aug, 23, 2005.
US 2014/0250362 A1l Sep. 4, 2014 Office Action dated Nov. 23, 2009 in related U.S. Appl. No.
11/209,335.
(51) Int.Cl. U.S. A_ppl. No. 11/210,270, filed Aug. 23,_2005.
GO6F 9/44 (2006.01) Interview Summary dated Mar. 4, 2009 in related U.S. Appl. No.
’ 11/210,270.
GOG6F 17/22 (2006.01) - . .
Examiner’s Answer mailed Nov. 25, 2009 in related U.S. Appl. No.
GO6F 3/0484 (2013.01) 11/210,270.
GO6F 17/21 (2006.01) U.S. Appl. No. 11/500,023.
(52) US.CL Office Action of May 11, 2010 in U.S. Appl. No. 11/500,023.
CPC GOG6F 17/2247 (2013.01); GO6F 3/0484 (Continued)
(2013.01); GOGF 3/04842 (2013.01); GO6F
(53) Field of Classification S h 177212 (2013.01) Primary Examiner — James D Rutten
Nloene ot Lassification Searc (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
See application file for complete search history. Stockton LLP
(56) References Cited 7 ABSTRACT

U.S. PATENT DOCUMENTS

5,185,698 A 2/1993 Hesse et al.

5,442,742 A 8/1995 Greyson et al.

6,105,036 A 8/2000 Henckel

6,151,426 A 11/2000 Lee et al.

6,931,625 B1* 8/2005 Coadetal.cccoon.en. 717/109

A method, system, and computer program product for pro-
viding automatic expanding and collapsing of a portion of
visual content on a screen including expanding the portion of
visual content, and providing a visual cue alerting a user that
the portion is automatically expanded from a collapsed state.

19 Claims, 6 Drawing Sheets

400
s

| File Edit Miew Insert Modify Text Commaonds Site Window Help

| [ch1025.nim)

EOh

SREAAELN - alEET

Hi(l

US 9,128,917 B2

Page 2
(56) References Cited Burkey and Sparkes, “Folding Editor—Comments Anyone?” Apr.
OTHER PUBLICATIONS 18, 1989, Usenet Post to group comp.sys.atari.st, Accessed via http://

groups.google.com.
Examiner’s Answer mailed Nov. 25, 2009 in U.S. Appl. No.

11/210,270. * cited by examiner

US 9,128,917 B2

Sheet 1 of 6

Sep. 8, 2015

U.S. Patent

([uy'SZ0 142 _

00t
\

=

10090

B« =@ | [a]le <> of] l2t] [Z]

> < |

me;o_m_m #p3 |

B

diay maip sboy Bnqag suoydp josloid sjoop youoag yp3 914

&)

US 9,128,917 B2

Sheet 2 of 6

Sep. 8, 2015

U.S. Patent

[WiY'SZ0 1Yo

00¢

33009

¢0¢

B « =@ [ake «» o[[2t] [Z]

n

i
i

e
] k]
= 3

¥ 3000

EINN T SIS

sejqo) [sjuoy Juowwo)|f =

M disy maip sbo| bngag suoydg yoslouq sjoo] yaupaS yp3 914

¢ OI4d IREF

&

US 9,128,917 B2

Sheet 3 of 6

Sep. 8, 2015

U.S. Patent

WIYSZ01Y0

= o>
o =

=

A

oom/r v
v
93009 E

=)

1b
M

nI'HH

4

L0g = PLAR> T

= VET X

[esmoag Ji 4p3

2P s b @G

sa1qo|][I sjuoy F%EEQ& EL

diay maip sboj bngaq suoydg joslord sjoo| yoioag yp3 9|4

&

US 9,128,917 B2

Sheet 4 of 6

Sep. 8, 2015

U.S. Patent

| |-ter

ui0q sem uojbuiysep 964095

uojbuyse abiogay) Jo a4 ayy

|||||||||||||| 0zy

uo)buiysep 861099

2y

vzl
€0V ~Iprwp>] s0v | 8L
.. . (

Lil
911

Y

Gl

180V vl

GOp A
vOp

NN

¢l

oov -an--. -c-- N — —
~prap> || 607 T~—got
207 - o

901
L0y 3403 <0l

y0l

M= E R =2 HHI

‘3
L

ian Y
tv 9

. Clbl

| my | ubissg [5T]| wids @ 8p0) E

R D EOO {fgEl

__ WIGZ0IY2

djoq mopullf oS spuowwo?) jxa] Ajpoly pasuj malx ppI o7 |

00t

v OId

US 9,128,917 B2

Sheet 5 of 6

Sep. 8, 2015

U.S. Patent

0z

: o f_.u.r 671

TPLAIP> |

01% €09

L0S -

TPLAp>

3000

()]

(e

Y]
oo
o

8
N 221
92
ST
¥21
8Ll
L1}

911

el ol =R N e [<

| :amn | ubisag 5]

D EOIO I EC

wds =]

=k

| .

m IWY'SZ01Yo

dioff Mopuilf S spuowwo] o] Appoly pesuj melx yp3 e |

005 ~_/

S OId

U.S. Patent Sep. 8, 2015 Sheet 6 of 6 US 9,128,917 B2

FIG. 6

RECEIVE USER INPUT SELECTING AT LEAST

601~ A PORTION OF A VISUAL COMPONENT IN

THE DESIGN VIEW, THE USER INTERFACE
COMPONENT DEFINED BY CODE

!

EXPAND THE SOURCE CODE IN THE

602 ™ CODE VIEW FROM A COLLAPSED STATE
IN RESPONSE TO THE RECEIVING
PROVIDE ONE OR MORE VISUAL

603 CUES INDICATING THAT THE SOURCE

CODE IS OTHERWISE COLLAPSED

!

REMOVE THE ONE OR MORE VISUAL CUES
AND RECOLLAPSE THE SOURCE CODE IN
RESPONSE TO OTHER USER INPUT

604 -]

FIG. 7 l ’/706 Ho-712
NETWORK

701 703 704 705
\ \ \ /
Vo COMMUNICATIONS
CPU RAM ROM ADAPTER ADAPTER 711
708
N\

USER
%ﬁ INTERFACE s
ADAPTER

713 N
74 709
707 /j% \@

715

US 9,128,917 B2

1
AUTOMATIC CONTENT EXPANSION
INDICATORS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 11/209,335, filed Aug. 23, 2005, entitled CONTENT
COLLAPSE OUTSIDE OF SELECTION and to U.S. patent
application Ser. No. 11/210,270, filed Aug. 23, 2005, entitled
MESSAGE CUES ASSOCIATED WITH CONTENT COL-
LAPSE INDICATORS, the disclosures of which are hereby
incorporated herein by reference.

TECHNICAL FIELD

This invention generally relates to collapsed/expanded
content in rendered views, and specifically relates to visual
cues describing collapsed/expanded content in Integrated
Development Environments (IDEs).

BACKGROUND OF THE INVENTION

Integrated Development Environments (IDEs) are soft-
ware tools that allow a developer (e.g., a web developer) to
create web pages, websites, interactive applications, and the
like for use by end users (e.g., visitors to websites). Various
IDEs exist in the current marketplace, such as DREAM-
WEAVER™, available from MACROMEDIA INC. of San
Francisco, Calif. and FRONTPAGE®, available from
Microsoft Corporation. DREAMWEAVER™ is an IDE that
allows web developers to design Hypertext Markup Lan-
guage (HTML) web pages in both a code editor and a graphi-
cal-based design time environment. DREAMWEAVER™
also allows the developer to design in other languages, such
as, for example, Extensible Markup Language (XML),
Extensible HTML (XHTML), Active Server Page (ASP),
COLDFUSION™ Markup Language (CFML™), and the
like.

An IDE may allow a developer to create a document in an
environment that includes both a text-based code view and a
graphical-based design view. The code view renders the
source code as text in a portion of the screen and allows the
developer to see and manipulate the source code in the docu-
ment file. For example, the developer may write and edit
HTML or Cascading Style Sheets (CSS) code in the code
view. The design view, on the other hand, is a What You See
Is What You Get (WYSIWYG) view of the document that
allows the user to visually manipulate the interpreted and
graphically laid-out version of the document, such as, for
example, by dragging, dropping, cutting, and pasting visual
components. As the developer works, changes to the docu-
ment are reflected in both the code view and the design view.

Further, an IDE may support a code collapse feature. Code
collapse, or code folding, in this example, is the ability to
visually replace portions of the text in a document with an
image or button, in effect hiding it, so that it does not take up
much screen space. Users typically employ such a feature to
hide portions of the code that they are not interested in or to
bring two or more portions of the code closer together so that
scrolling is not necessary to view them at the same time.

FIG. 1 is an illustration of example screen 100 from an
IDE, including example code view 110. Code views, such as
code view 110, are renderings of the source code as text for
inspection, creation, and manipulation by the user. Example
code view 110 is conceptual in that actual code is not shown
thereon, but is understood to be represented by the word,

10

15

20

25

30

40

45

55

60

65

2

“code.” FIG. 2 is an illustration of example screen 200 from
an IDE, including example code view 110. In screen 200, the
user has selected code B 201. A user usually marks a region of
source code (e.g., code 201) in code view 110 that he or she
wants to collapse or hide. The marking may be performed by
using a mouse or other pointing device to select code. The
developer then indicates to the program that he or she desires
to collapse selected code 201, for example, by clicking on
widget 202 in the gutter area of code view 110. Internally, the
program notates the region by dropping markers that capture
the range that was selected—a marker at the beginning of the
selection and a marker at the end of the selection. FIG. 3 is an
illustration of example screen 300 from an IDE, including
example code view 110. As shown in screen 300, when the
IDE re-renders code view 110, it renders code collapse button
301 in the place of selected code 201.

Some IDEs also support an automatic code expand feature.
In auto-expand, whenever a piece of collapsed code is
selected, such as by the developer performing a FIND/RE-
PLACE or selecting a corresponding visual object in the
design view, the program automatically expands the col-
lapsed code. When that piece of code is no longer selected, the
program automatically recollapses the code.

When working in an IDE with code collapse and auto-
expand, a developer may not realize that currently selected
code is otherwise collapsed, and when the developer selects
other code, it causes the auto-expanded code to recollapse
unexpectedly. As a result, the developer may be distracted or
lose his or her place in the code view. No IDEs that provide a
code collapse feature with auto-expand provide a visual indi-
cation to the developer that certain code in the code view is
auto-expanded from a collapsed state.

BRIEF SUMMARY OF THE INVENTION

The present invention, in one example, is directed to a
system, method, and computer program that provide visual
cues to the user indicating that a particular section of code has
been auto-expanded, and is, therefore, otherwise collapsed.
For example, the visual cues include vertical hash marks in
the code view that show the vertical extent of the auto-ex-
panded section. Other examples of visual cues include unique
color highlighting, underlining, and the like, which may be
applied to the particular auto-expanded code in the code view.
An advantage of some embodiments is that the user is
informed as he or she works with a section of code that that
section is otherwise collapsed.

Further, it should also be noted that various embodiments
of the invention are not limited to collapsing and expanding
code in IDEs. Various embodiments may be applied to text
editors, word processors, and the like, to indicate that text
content has been auto-expanded. Still further, programs that
collapse and expand other content (e.g., visual elements) may
benefit from the indicators described herein.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that the
detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the sub-
jectof the claims of the invention. It should be appreciated by
those skilled in the art that the conception and specific
embodiment disclosed may be readily utilized as a basis for
modifying or designing other structures for carrying out the
same purposes of the present invention. It should also be
realized by those skilled in the art that such equivalent con-
structions do not depart from the spirit and scope of the
invention as set forth in the appended claims. The novel

US 9,128,917 B2

3

features which are believed to be characteristic of the inven-
tion, both as to its organization and method of operation,
together with further objects and advantages will be better
understood from the following description when considered
in connection with the accompanying figures. It is to be
expressly understood, however, that each of the figures is
provided for the purpose of illustration and description only
and is not intended as a definition of the limits of the present
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, reference is now made to the following descriptions
taken in conjunction with the accompanying drawings, in
which:

FIG. 1 is an illustration of an example screen from an IDE,
including an example code view;

FIG. 2 is an illustration of an example screen from an IDE,
including an example code view;

FIG. 3 is an illustration of an example screen from an IDE,
including an example code view;

FIG. 4 is an illustration of an example screen of an IDE
adapted according to one embodiment of the invention;

FIG. 5 is an illustration of an example screen of an IDE
adapted according to one embodiment of the invention;

FIG. 6 is a flowchart illustrating an exemplary method,
which may be performed by a computer system executing
IDE software, the IDE providing a code view and a design
view, the method adapted according to one embodiment of the
invention; and

FIG. 7 illustrates an example computer system adapted
according to embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 4 is an illustration of example screen 400 of an IDE
adapted according to one embodiment of the invention.
Screen 400 is an example IDE screen (i.e., document win-
dow) that contains code view 410 and design view 420. Code
view 410 is a view of the source code of a document rendered
on the screen as text. Code view 410 includes source code 401
(replaced with “code”) and source code 404 and source code
405, not shown as text in FIG. 4, but rather, represented by
highlighting 406 so that the features of the invention may be
more easily seen. It should be understood that the word,
“code,” and highlighting 406 indicate conceptually that
source code should be rendered as text in that area of screen
400. Code 401 is not currently collapsed or auto-expanded.
Code collapse buttons 402 and 403 represent code that is
currently collapsed and not auto-expanded, such that it is
currently hidden. Code 404 is auto-expanded code that is not
hidden. However, because it may be subject to automatic
collapse once another section is selected, it is momentarily
not hidden, but otherwise designated as collapsed. Code 404
contains portion 405 that is currently selected, as shown by its
different highlighting.

When a developer makes a selection in design view 420,
the IDE shows which code is actually selected in code view
410. In FIG. 4, a developer has selected portion 422 of the
visual representation of component 421. Note that the text in
selection 422 corresponds to selected portion 405 in code
view 410. A selected portion of code has two end points—a
start end point and an end end point. When a selection is
made, the program determines if either or both of the end
points fall within a collapsed section of code. When an end
point of a selection falls within a collapsed section of code,

10

15

20

25

30

35

40

45

50

55

60

65

4

the IDE auto-expands the code in that particular code collapse
button. For example, if a collapsed section of code contains a
start end point, an end end point, or both, the IDE expands that
section.

Code view 410 includes background coloring or highlight-
ing 406 that is applied to code 404. Highlighting 406 is of a
different color or pattern than any background color used with
uncollapsed code. The unique coloring or patterning of high-
lighting 406 indicates to the user that code 404 is auto-ex-
panded, but otherwise collapsed. In one or more embodi-
ments, the highlighting of selected portion 405 may also be a
unique color to indicate that it is a selected portion of an
auto-expanded section. Highlighting 406 is one kind of visual
indicator that code is auto-expanded from a collapsed state.

A second kind of visual indicator to identify code as auto-
expanded is illustrated by hash marks 407 in the gutter area of
code view 410. Hash marks 407 mark the vertical expanse of
the auto-expanded lines. A developer can see immediately
that code 404 from line 113 to line 116, inclusive, is auto-
expanded code and is otherwise collapsed. Much like high-
lighting 406, hash marks 407 may be rendered in a color that
indicates that code 404 is auto-expanded. Alternatively, hash
marks 407, alone, may be sufficient to alert the developer to
auto-expanded code.

Widgets 408 are not a visual indicator that code is auto-
expanded, but rather, mark the extent of the selected portion.
Widgets 408 are rendered whenever code is selected, not just
when collapsed code is selected. The purpose of widgets 408
is to allow the developer to collapse the code by clicking
thereon. In other words, by clicking the minus sign, a devel-
oper can designate code as collapsed and can even collapse
code inside collapsed code.

FIG. 5 is an illustration of example screen 500 of an IDE
adapted according to one embodiment of the invention.
Screen 500 includes code view 510 and design view 520. In
the example of FIG. 4, the end points of the selected portions
both lie in a single section of collapsed code; however, in the
example illustrated in FIG. 5, end points of selected code 507
are each contained in two non-contiguous collapsed sections,
each section denoted by visual indicators 502 and 506. The
one-line gap between the bottom of indicator 502 and button
505 shows that uncollapsed code (not shown) is in line 117.
Also, between the two non-contiguous collapsed sections
exist intervening code collapse button 505 at line 118 and
more uncollapsed code (not shown) at lines 124-126. The
auto-expand function has, therefore, expanded the two non-
contiguous collapsed sections denoted by indicators 502 and
506. Accordingly, auto-expanded code 503 is non-contigu-
ous, as it reaches from line 113-116 and from line 127 to a
point below the lower boundary of code view 510. Further,
highlighting 504 is another visual indicator that code 503 is
auto-expanded and is similar to highlighting 406 (FIG. 4),
while visual indicators 502 and 506 are similar to hash marks
407 (FIG. 4).

It should be noted that the IDE of FIG. 5 does not auto-
expand intervening collapsed code, such as that represented
by button 505, because such code does not contain an end
point of selected portion 507. However, alternative embodi-
ments may expand intervening sections, as well as nested
collapsed code (i.e., collapsed code within collapsed code,
not shown). Accordingly, the present invention is not limited
to particular methods of performing auto-expand.

FIG. 6 is a flowchart illustrating exemplary method 600,
which may be performed by a computer system executing
IDE software, the IDE providing a code view and a design
view, the method adapted according to one embodiment of the
invention. In step 601, the computer system receives user

US 9,128,917 B2

5

input selecting at least a portion of a visual component, the
visual component defined by source code. Examples of
receiving user input include receiving input from a mouse
device selecting the portion in the design view and receiving
user input initiating a FIND/REPLACE process in the source
code that affects source code defining the visual object. The
invention is not limited by the manner of receiving user input.

In step 602, the computer system expands the source code
in the code view from a collapsed state in response to the
receiving. In this step, the source code is collapsed, and the
IDE receives the user input and auto-expands the source code,
such that the source code is no longer hidden but is otherwise
collapsed. Step 602, in this example, includes marking a
beginning point and an ending point of the selected portion of
the section in response to the user’s selecting. Additionally,
step 602 includes determining that one or more of the points
is within the section of collapsed source code by comparing
the points to the boundaries of one or more collapsed sections.
Further, although the examples above include auto-expand-
ing all of the code in a given collapsed section, the invention
is not limited thereto, as alternate embodiments may expand
only the selected portions of the collapsed sections while
leaving unselected portions hidden.

In step 603, the computer system provides one or more
cues indicating that the source code is otherwise collapsed. As
shown in FIGS. 4 and 5, visual cues may include highlighting
the auto-expanded code and marking the extent of the auto-
expanded code with hash marks in a gutter area. Other visual
cues may exist and are within the scope of the various
embodiments. In fact, other non-visual cues, such as audio or
Braille cues may be included in one or more embodiments of
the invention.

In step 604, the computer system removes the one or more
cues and recollapses the source code in response to other user
input. The computer system performs step 604 by rendering
the code view without the cues and with a code collapse
button in place of the code. In one example, the IDE provides
automatic collapse as well as auto-expand in the code view. In
another example, the IDE receives manual input instructing
that the code be re-hidden. The other user input may include,
among other things, selecting another portion of source code
or otherwise indicating that the code should no longer be
expanded.

Various embodiments stand in contrast to IDEs that pro-
vide no visual indication to the developer that certain code in
the code view is auto-expanded from a collapsed state.
Example advantages include providing context to the user for
the automatic functions ofthe IDE. Such context may help the
user to identify expanded areas of the source code more
quickly and with less effort, thereby providing a more enjoy-
able experience.

Some embodiments of the invention are not limited to
IDEs. Thus, while the above examples are in the context of
IDEs, various embodiments of the invention may be applied
to other kinds of tools, as well. Other kinds of user programs
that show text on a screen, e.g., word processors and text
editors, may use the collapse and automatic collapse indica-
tors described above. In fact, source code is only one type of
text, and various embodiments may be applied to code, ren-
dered portions of text content, raw text, and the like. For
instance, a long document may benefit from a text collapse
feature that hides text thatis not of interest, and automatic text
collapse indicators may be used to mark text that is auto-
expanded, for instance, during a FIND/REPLACE operation.
Thus, a program that loads the contents of a document file,
interprets the contents, and renders a representation of it to a
user may benefit from the invention. In fact, various embodi-

10

15

20

25

30

35

40

45

50

55

60

65

6

ments apply to IDEs and other tools that create documents in
general, as well as tools that create interactive applications.

Other types of content may be collapsed and expanded,
and, therefore, may find application in some embodiments.
For instance, the collapse feature can be extended to operate
on visual elements in a design view, for example, by hiding
the contents of a table or paragraph. Accordingly, cues can be
used to indicate that some visual content has been auto-
expanded. Examples of possible cues include highlighting,
hash marks, unique color renderings, and the like.

When implemented via computer-executable instructions,
various elements of embodiments of the present invention are
in essence the software code defining the operations of such
various elements. The executable instructions or software
code may be obtained from a readable medium (e.g., a hard
drive media, optical media, EPROM, EEPROM, tape media,
cartridge media, flash memory, ROM, memory stick, and/or
the like) or communicated via a data signal from a commu-
nication medium (e.g., the Internet). In fact, readable media
can include any medium that can store or transfer informa-
tion.

FIG. 7 illustrates example computer system 700 adapted
according to embodiments of the present invention. That is,
computer system 700 comprises an example system on which
embodiments of the present invention may be implemented.
Central processing unit (CPU) 701 is coupled to system bus
702. CPU 701 may be any general purpose CPU. However,
the present invention is not restricted by the architecture of
CPU 701 as long as CPU 701 supports the inventive opera-
tions as described herein. CPU 701 may execute the various
logical instructions according to embodiments of the present
invention. For example, CPU 701 may execute machine-level
instructions according to the exemplary operational flows
described above in conjunction with FIG. 6.

Computer system 700 also preferably includes random
access memory (RAM) 703, which may be SRAM, DRAM,
SDRAM, or the like. Computer system 700 preferably
includes read-only memory (ROM) 704 which may be
PROM, EPROM, EEPROM, or the like. RAM 703 and ROM
704 hold user and system data and programs, as is well known
in the art.

Computer system 700 also preferably includes input/out-
put (I/O) adapter 705, communications adapter 711, user
interface adapter 708, and display adapter 709. I/O adapter
705, user interface adapter 708, and/or communications
adapter 711 may, in certain embodiments, enable a user to
interact with computer system 700 in order to input informa-
tion, such as, for example, selecting a portion of code or a
visual representation of a component.

1/O adapter 705 preferably connects to storage device(s)
706, such as one or more of hard drive, compact disc (CD)
drive, floppy disk drive, tape drive, etc. to computer system
700. The storage devices may be utilized when RAM 703 is
insufficient for the memory requirements associated with
storing data for program 703. Communications adapter 711 is
preferably adapted to couple computer system 700 to network
712 (e.g., the Internet). User interface adapter 708 couples
user input devices, such as keyboard 713, pointing device
707, and microphone 714 and/or output devices, such as
speaker(s) 715 to computer system 700. Display adapter 709
is driven by CPU 701 to control the display on display device
710 to, for example, display the code view and design views
(as in FIGS. 4-5) of embodiments of the present invention.

It shall be appreciated that the present invention is not
limited to the architecture of system 700. For example, any
suitable processor-based device may be utilized, including
without limitation personal computers, laptop computers,

US 9,128,917 B2

7

computer workstations, and multi-processor servers. More-
over, embodiments of the present invention may be imple-
mented on application specific integrated circuits (ASICs) or
very large scale integrated (VLSI) circuits. In fact, persons of
ordinary skill in the art may utilize any number of suitable
structures capable of executing logical operations according
to the embodiments of the present invention.

Although the present invention and its advantages have
been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention as
defined by the appended claims. Moreover, the scope of the
present application is not intended to be limited to the par-
ticular embodiments of the process, machine, manufacture,
composition of matter, means, methods and steps described in
the specification. As one of ordinary skill in the art will
readily appreciate from the disclosure of the present inven-
tion, processes, machines, manufacture, compositions of
matter, means, methods, or steps, presently existing or later to
be developed that perform substantially the same function or
achieve substantially the same result as the corresponding
embodiments described herein may be utilized according to
the present invention. Accordingly, the appended claims are
intended to include within their scope such processes,
machines, manufacture, compositions of matter, means,
methods, or steps.

What is claimed is:
1. A method for providing automatic expanding and col-
lapsing of a portion of visual content on a screen, said method
comprising:
providing, by a computing system, an interface displaying
visual content, wherein at least some of the visual con-
tent is represented in a collapsed state, wherein the inter-
face supports an expand command to expand content
represented in a collapsed state, a collapse command to
collapse content represented in an expanded state, and at
least one selection command which, in response to input
identifying content of interest, searches for the content
of interest and automatically expands content repre-
sented in the collapsed state if the content represented in
the collapsed state comprises the content of interest, the
selection command invocable independently from the
expand or collapse command;
receiving, by the computing system, input invoking the
selection command and identifying content of interest;

determining, by the computing system that the content of
interest is included in a portion of the content that is
represented in the collapsed state;

automatically expanding, by the computing system, said

portion of the visual content; and

providing, by the computing system, output to display a

visual cue on a display device, the visual cue associated
with the portion that was automatically expanded and
configured to indicate that said portion was automati-
cally expanded from a collapsed state in response to
invoking the selection command,

wherein the visual cue distinguishes said automatically

expanded portion from other content represented in the
expanded state alongside the automatically-expanded
portion, and wherein the other content represented in the
expanded state is expanded in response to an event other
than the input invoking the selection command and iden-
tifying the content of interest.

2. The method of claim 1 wherein the visual content com-
prises text, source code, or a visual element.

20

40

45

50

55

65

8

3. The method of claim 1 wherein said visual cue comprises
atleast one of hash marks in a gutter of a code view indicating
lines containing expanded collapsed code or highlighting
expanded collapsed code.
4. The method of claim 1 wherein said expanding includes
expanding nested collapsed sections of said visual content.
5. The method of claim 1 wherein said method is performed
by one of: an Integrated Development Environment (IDE); a
word processing program; or a text editor.
6. The method of claim 1 further comprising recollapsing
said portion and removing said visual cue.
7. A method for providing an Integrated Development
Environment (IDE), said IDE including a code view depicting
source code content and a design view depicting a graphically
laid-out version of a document defined by source code in the
code view, said method comprising:
receiving user input selecting at least a portion of visual
representation of a component in said design view, said
component defined by source code in said code view;

expanding a section of said source code in said code view
from a collapsed state in response to said receiving;

providing one or more visual cues indicating that said
section of said source code defines said component and
was expanded in response to said user input in said
design view selecting said portion of said visual repre-
sentation of said component; and

removing said one or more visual cues and recollapsing

said section of said source code.

8. The method of claim 7 wherein said expanding said
section of said source code in said code view comprises:

marking a beginning point and an ending point of a portion

of said source code corresponding to said at least a
portion of said visual representation of said component;
and

determining that one or more of said points is within said

section of said source code.

9. The method of claim 7, wherein said removing said one
or more visual cues and recollapsing said section of said
source code is in response to receiving user input in said
design view removing selection of said portion of said visual
representation of said component.

10. The method of claim 7, wherein said removing said one
or more visual cues and recollapsing said section of said
source code is in response to receiving user input in said
design view selecting at least a portion of visual representa-
tion of a different component in said design view, said differ-
ent component defined by different source code in said code
view.

11. A method for providing automatic expanding and col-
lapsing of portions of visual display, said method comprising:

providing, by a computing system, a code view depicting

source code content and a design view rendering a
graphic layout of elements defined by the source code, at
least a first portion of the source code content repre-
sented in a collapsed state in the code view and at least a
second portion of the source code content represented in
an expanded state;

automatically expanding the first portion of the source

code content represented in the collapsed state in
response to user input identifying an element rendered in
the design view and defined by source code included in
the portion;

providing indicators in the code view that the first portion

is automatically expanded from a collapsed state, the
indicators distinguishing the automatically expanded
first portion from the second portion, wherein the second

US 9,128,917 B2

9

portion is expanded in response to an event other than the
user input identifying the element rendered in the design
view; and

recollapsing said first portion and removing said indicators

from said screen in response to further user input.
12. The method set forth in claim 11, wherein the indicators
comprise at least one of hash marks in a gutter of said code
view indicating lines of code defining the identified element
and a change in the appearance of lines of code defining the
identified element.
13. The method set forth in claim 11, wherein the code
comprises source code defining a word processing document,
a Hypertext Markup Language (HTML) document, or a Rich
Internet Application (RIA).
14. A computer program product comprising a non-transi-
tory computer readable medium embodying program code,
the computer program product comprising:
program code for providing a first interface and displaying
content in the first interface, the first interface supporting
an expand command to expand content represented in a
collapsed state and a collapse command to collapse con-
tent represented in an expanded state;
program code for collapsing at least a portion of the content
in response to the collapse command and rendering a
collapse indicator in place of the collapsed content in the
first interface, the collapse indicator rendered alongside
other content represented in the expanded state;

program code for providing a second interface and receiv-
ing a selection command identifying content of interest
via the second interface;

program code for determining, in response to the selection

command, if the content of interest is included in the
collapsed content; and

program code for expanding at least the portion of col-

lapsed content including the content of interest and pro-
viding an indicator, the indicator visually distinguishing
the portion that has been automatically expanded from a

10

15

20

25

30

35

10

collapsed state in response to the selection command
from the other content represented in the expanded state,
wherein the other content represented in the expanded
state is expanded in response to an event other than the
selection command.

15. The computer program product set forth in claim 14,
wherein the second interface comprises a search interface
configured to receive one or more search terms identifying the
content of interest.

16. The computer program product set forth in claim 15,
further comprising:

program code for identifying when use of the search inter-

face is complete; and

program code for re-collapsing the expanded portion of the

content after use of the search interface is complete.

17. The computer program product set forth in claim 14,
wherein content in the first interface comprises source code
and the second interface comprises a design view rendering
elements defined by the source code in the first interface,
wherein the selection command identifying content of inter-
est comprises selection of one or more elements rendered in
the second interface.

18. The computer program product set forth in claim 17,
further comprising:

program code for re-collapsing the expanded portion of the

content after the selected one or more elements are de-
selected.

19. The computer program product set forth in claim 14,
wherein the visual indicator visually distinguishes the portion
that has been automatically expanded by using at least one of:

a color or highlighting different from a color or highlight-

ing associated with the other content already represented
in the expanded state; or

hash marks different from hash marks or annotations asso-

ciated with the other content already represented in the
expanded state.

